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Abstract—Experiments suggesting the existence of mind-matter interaction
(MMI) effects on the outputs of random number generators (RNG) have been
criticized based on the questionable assumption that MMI effects operate
uniformly on each random bit, independent of the number of bits used per
sample, the rate at which bits are generated, or the psychological conditions of
the task. This ‘‘influence-per-bit’’ assumption invariably leads to the conclusion
that the significant cumulative results of these experiments, as demonstrated
in meta-analyses, are due not to MMI effects but rather to publication biases.
We discuss why this assumption is doubtful, and why publication bias and
other common criticisms of MMI-RNG studies are implausible.
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We appreciate Martin Schub’s interest in the Radin and Nelson (1989, 2003)
meta-analyses of mind-matter interaction (MMI) experiments involving random
number generators (RNGs). His paper is one of several critiques of the RNG
meta-analyses that have appeared in recent years. Three of those re-examined
data used in previous RNG meta-analyses; they include Scargle (2000), Ehm
(2005), and now Schub (this issue). A fourth article is a new meta-analysis by
B�sch et al. (in press). All of these critiques and analyses are commendable.
Fresh examinations of controversial data are useful in leading to more refined
analyses and clearer interpretations of the results.

Schub’s critique raises three major points and a number of minor ones. The
first major point involves a debatable assumption about the nature of MMI and
the consequences of that assumption. The other major points are two common
critiques of meta-analyses, especially those involving controversial topics. They
involve the possible biasing effects of publication bias and assertions about low
experimental quality. Because these latter two points are notoriously difficult to
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assess objectively, the resulting ambiguity allows the critic to dismiss meta-
analytic outcomes as insufficiently persuasive. This predictably leads to calls
for a highly repeatable, ‘‘perfect’’ experiment to settle the issue. The appeal of
a proof-positive experiment is understandable, but it is also entirely unrealistic.
No experiment can ever achieve that level of perfection. Why then do some
scientists persist in exploring the frontier in spite of its uncertainties, while
others remain stubbornly skeptical in the face of ever-accumulating evidence?
We address this important question, which is of special interest to readers of this
journal, in our concluding remarks.

What is MMI?

Schub assumes, as have others (B�sch et al., in press; Ehm, 2005) that MMI
‘‘operates’’ by uniformly influencing each generated random bit regardless of the
number of bits used per sample, the rate at which bits are produced, or the
psychological conditions of the task. He expresses this key assumption through
his surprise that different weighting schemes lead to different statistical results,
and with phrases such as this ‘‘is not what one would expect from a stationary,
repeatable effect.’’

The problem with this assumption is that there is no valid reason to expect that
MMI should behave in this way. Indeed, we are unaware of any sort of human
performance that is unaffected by such parametric changes. For example,
a factory worker who can identify defective parts with 100% accuracy as they
roll by at one or two per second will do no better than chance if the conveyor
belt is suddenly accelerated to 1,000 parts per second. And yet the bit rate in the
various MMI-RNG experiments range over not just three orders of magnitude,
but six orders, and they involve significant physical differences in the underlying
mechanisms for generating random bits.

Then there are psychological considerations. Let’s say we conduct two RNG
experiments. The first involves 1,000 highly experienced meditators, each of
whom is selected based on his or her performance on previous, similar RNG tasks.
Each participant is asked by a cordial, enthusiastic investigator to engage in a
daily intention-focusing practice for six months in preparation for the experiment.
When the experiment occurs, the participant is asked to intentionally influence the
generation of a single truly random bit. The outcome of that one random decision
will be provided as feedback either as a moment of silence (counted as a miss) or
as a breathtaking fireworks display (a hit). If the fireworks display is observed,
then the participant will also win something especially meaningful, like a schol-
arship or other accolade. In the second RNG study, a bored student investigator
indifferently recruits an apathetic college sophomore, who is asked to press
a button and mentally influence 1,000 random bits generated in one second, with
no feedback of the results, and with no consequences regardless of the outcome.

The physical context of these two studies may be identical, employing the
same RNG and the same statistics to evaluate the resulting datasets, each of
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which consists of 1,000 random bits. But it is clear that the psychological
contexts differ radically. If we presumed that the only important factor in this
type of experiment was the number of bits generated, then the two studies should
provide about the same outcome. But if MMI effects are moderated by variables
such as the amount of time or effort one can apply in focusing mental intention
towards the random events, or one’s skill, or motivation, or how the bits were
generated, then the first study might well result in an effect size orders of
magnitude larger than the second.

The point is that one’s view of what is meant by MMI shapes the definition of
effect size, and as such it is important to underscore that the hypothesis under
consideration is not merely a proposal about pure physics. Rather, the two M’s in
MMI propose an interaction in which the psychological and the physical are
related in a meaningful way. A simple physics-centric assumption may be ap-
propriate for an experiment designed to measure, say, the gravitational con-
stant, but it is inappropriate for an experiment involving MMI.

Incidentally, the effect size of interest in most behavioral, social, and medical
meta-analyses is based on performance at the subject level, and not on individual
trials, samples, or runs within subjects, or accumulated across subjects. The
reason that individual bits have become the effect size of interest in MMI
experiments is undoubtedly because these are the most readily available and
commonly reported data, and not because they are the most appropriate data.
Indeed, as Schub states, ‘‘since the original hypothesis behind the experiments is
that subjects can enhance hit rates, methods not based on hit rate are not tests of
the original hypothesis.’’ We agree, but then what hit rate is most appropriate?
Schub means hit rate calculated based on individual bits. We suggest that better
measures may be hit rates based on subjects’ performance, or derived from
the statistical significance of an entire experiment.

Alternatives to Influence Models

To the neophyte, an influence-per-bit model may appear to be the only way
to imagine the ‘‘mechanism’’ of MMI. But there are other interpretations. The
continuing debate over influence vs. precognition models, as formalized for
example in Decision Augmentation Theory (Dobyns & Nelson, 1998; May et al.,
1995), shows that there is much room for creative thought in modeling how
RNG experiments can produce genuine non-chance results without invoking an
influence-per-bit explanation.

Another alternative model is that the outcomes of MMI studies reflect a goal-
oriented or teleological process associated with the psychological characteristics
of the overall task (Schmidt, 1987). Under this proposal, RNG outcomes are best
measured by the statistical results of entire sessions, or by units associated with
feedback per effort. A third alternative is that the key variable in these studies is
the amount of time the participant spends in mental effort (Nelson, in press).
These alternatives are testable, and indeed when B�sch et al. (in press) tested our
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suggestion that one might find z scores to be independent of sample size (Radin
& Nelson, 2003), they confirmed that this was indeed the case in their RNG
meta-analysis (after excluding three large ‘‘outlier’’ studies, which they argued
was the preferred way of analyzing the data).

Schub questioned our ‘‘bold’’ proposal of a constant-z score, writing that
‘‘even if the [MMI] effect were real, the correlation [between z score and sample
size] would be very small, and possibly non-significant, if the hit rate were
also very small.’’ Assuming that by ‘‘hit rate’’ Schub meant effect size per bit,
then his comment is incorrect. The number of bits used in individual MMI
experiments has ranged from about 102 to 108 bits. Assuming a stationary
bitwise effect size (e) of any non-zero magnitude, then the z scores resulting
from the largest studies would be 1,000 times larger than those from the smallest
studies due to the relationship z ¼ e

ffiffiffiffi

N
p

. This would guarantee a very significant
correlation. There is some evidence in support of this relationship within the
PEAR RNG data (Radin, in press), but it is not supported by analysis of the
remainder of the literature (May et al., 1995), possibly because the dozens of
design variations in those latter studies obscured systematic relationships
between z and N.

Different Ways of Presenting the Data

Schub writes, ‘‘Statistical significance in these meta-analyses can clearly be
arrived at by a variety of methods which yield a wide variety of results. The
results vary so widely because of some serious problems with the data . . ..’’
Actually, the results vary not because of ‘‘serious problems,’’ but for a more
mundane reason: Different analytical assumptions naturally lead to dissimilar
outcomes. It is true that this class of experiments has been examined in
numerous ways over the years, and for much the same reason that Schub did.
By exploring various ways of combining the data, one can test different assump-
tions about the postulated effects. Of course, as long as the different models
produce outcomes ranging from very to astronomically significant, conclusions
about the existence of MMI effects are not in question.

Data from individual experiments can also be partitioned in different ways,
e.g. as Schub notes the entire PEAR Lab RNG database can be collapsed into
a single datapoint or it can be regarded as hundreds of separate experiments. In
addition, the ways results are discussed in various papers are often adjusted
to match the intended audience. In articles intended for physicists, we have
emphasized measurement concepts such as effect sizes and standard errors, and
we assumed a certain degree of statistical sophistication (Radin & Nelson,
1989). For example, referring to our 1989 meta-analysis in Foundations of
Physics, Schub writes ‘‘Oddly, it does not quote a statistical significance of its
primary result, though a z-score of about 6.8 can be read from one of the
graphs.’’ Actually, in that paper we report that in N ¼ 597 experiments the
average z¼ 0.645. We anticipated that most readers of Foundations of Physics
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would be sufficiently adept at elementary statistics to understand that this meant
the Stouffer z score was sz ¼ �z

ffiffiffiffi

N
p
¼ 15:76. We also assumed that those readers

knew that an effect associated with 6.8 (weighted) or 15.76 (unweighted)
standard errors beyond chance is so unlikely that citing the associated p-values
is unnecessary.

For other audiences, such as psychologists and medical researchers, we have
highlighted probabilistic concepts familiar in those disciplines, such as z scores
and p-values (Radin & Nelson, 2003). For the general public we have been
obliged to simplify the presentation and use probabilistic concepts associated
with lotteries and casino games, such as hit rates and odds ratios (Radin, 1997,
in press).

Publication Bias

Based on an asymmetric funnel plot, Schub concludes the presence of
publication bias. The asymmetry in the plot is driven by heterogeneity in the
bitwise effect size, with smaller studies (fewer total bits) showing much larger
per-bit hit rates than larger studies. Under a uniform influence-per-bit model,
this heterogeneity could indeed suggest a publication bias. However, the above
discussions about the modulating effects of physical and psychological
parameters provide a number of reasons for expecting heterogeneity, even in
the complete absence of publication bias.

To illustrate why, consider Figure 1. This illustrates the failure of the funnel
plot technique when applied to simulated data with no selective reporting bias
(by design) and with data that are genuinely non-homogeneous. These data were
synthesized according to a model comparable to a constant-z hypothesis, and
then plotted according to their associated bitwise measurement uncertainty, as
Schub would have done. The asymmetry in the upper graph is clear; the
lower graph shows the effect of applying the standard ‘‘trim and fill’’ algorithm
(Duval & Tweedie, 2000) to estimate the presence and impact of publication
bias. Figure 1 demonstrates that when the underlying data do not fit the assump-
tions used in the standard funnel plot, then the analyst will unavoidably arrive
at an incorrect conclusion. With intrinsically non-homogeneous data, typified
by those observed in RNG studies, the standard funnel plot approach virtually
guarantees an incorrect conclusion of publication bias.

In justifying his conclusions based on the funnel plot, Schub suggests that
publication bias is a viable explanation because ‘‘In some fields, the marginal
effort and expense of conducting a study is so high that very few studies ever go
unreported. The RNG studies are probably not in that category, since the time it
takes to conduct another study can be fairly modest.’’ The problem with this
explanation is that it is again predicated on the assumption that the only
meaningful factor in these experiments is the total number of bits generated per
study. If that assumption is even partially incorrect, then the publication bias
argument falls apart.
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In a related criticism, referring to Scargle’s (2000) method for estimating the
number of studies required to nullify a meta-analytic result, Schub criticizes
the Radin and Nelson (1989) paper because ‘‘Using Rosenthal’s [filedrawer
estimate] method, R&N estimate a ‘failsafe’ number of 54,000 unpublished

Fig. 1. Funnel plot (above) for simulated data generated according to a model comparable to
a constant-z score hypothesis, without publication bias, and (below) after application of the
standard trim-and-fill technique.

Fig. 1. Continued.
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studies, but had they used [Scargle’s] z ¼ �0.1085 instead of z ¼ 0 for
unpublished studies, the estimate would have been only 2,681.’’ This is
a peculiar criticism because it suggests we should have employed a method
which was developed eleven years later. Parapsychological studies have always
attracted especially sharp criticisms, but this is the first instance we know of in
which a critique was based on a failure to be precognitive.

In any case, imagine that we had used precognition and estimated that the
filedrawer consisted of ‘‘only 2,681’’ non-significant, unpublished, irretrievable
studies. Such a figure would have required every investigator who had ever
reported an RNG experiment to also conduct but not report an additional thirty
studies. Is that plausible? Not counting the PEAR Lab, which has no file-
drawer problem due to a long-established laboratory policy, the most prolific
investigator has been Helmut Schmidt. On average, Schmidt published about
three studies per year for thirty years, many times the average rate of the other
researchers. To achieve the estimated filedrawer of 2,681 studies, each of the
other ninety investigators would have had to match Schmidt’s prodigious output
for a full ten years, and for not a single one of those studies to be reported or
retrievable, even in surveys among colleagues who have known each other for
decades. This is a highly implausible scenario.

Aside from the non-zero mean of the meta-analytic data, Schub also notes
the increased variance of the distribution of results. This makes the claim of
publication bias even more problematic, because the unexpected number of
studies in the tails requires that a substantial amount of data must be missing
from the center of the distribution. Of course, the peculiar void in the range
�0.4 , z , 0, as noted by Schub, would be in accord with this thesis. But
how realistic is this supposed missing data? Consider a center-suppressing
biased publication process in which all studies with z . 1.645 are published,
a fraction A of studies with z ,�1.96 are published, and a fraction B of studies
with�1.96 , z , 1.645 are published. This two-parameter model can be fit to
the observed average z¼0.645 and variance r2¼2.903 to yield A¼0.635 and B
¼ 0.037. This leads to an overall publication rate of 0.1, from which it follows
that a filedrawer of 597 3 9 ¼ 5,373 studies is required to fit both the mean
and the variance of the published results. The high frequency of studies in the
tails, which Schub dismisses as unimportant, is actually an uncomfortable fit
even based on this two-parameter model. Several published MMI-RNG studies
have reported results with z . 6, and the probability of even one such study
appearing in a total population of 5,970 experiments is itself very unlikely, with
p ¼ 5.9 3 10�6.

Schub counters with ‘‘direct evidence for publication bias in at least one
original paper (Schmidt, 1976), where it is explicitly stated that complete
records were not kept for some studies which did not produce positive
results . . . .’’ Regarding the total of four studies cited, what Schmidt actually
reports are experiments he describes ‘‘only as suggestive pilot studies.’’ Schmidt
was careful to maintain the distinction between ‘‘suggestive pilot’’ or screening
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studies designed to locate talented participants vs. his pre-planned confirmatory
tests. Schub is correct, however, that Schmidt’s screening studies in that paper
were included in our meta-analysis. So it is instructive to see what effect they
had on the combined results. A Stouffer z of all fifteen experiments reported in
Schmidt’s paper was z ¼ 7.96. When the four screening studies were removed,
the composite z (non-significantly) declined to z ¼ 6.19, still astronomically
above chance.

More to the point are the results of the B�sch et al. (in press) RNG meta-
analysis, as they partitioned pre-planned (N ¼ 253 studies), post-hoc (N ¼ 77),
and not clearly specified (N¼ 50) experiments. For the pre-planned studies they
found, based on a random effects model, evidence significantly in favor of the
MMI hypothesis (after excluding three very large sample size studies, as they
recommended).

To avoid future problems associated with selective reporting, Schub recom-
mends a policy in which planned MMI experiments should be registered.
This commendable policy has been implemented for decades by the European
Journal of Parapsychology. In addition, an editorial policy encouraging authors
to report all studies, positive or negative, was adopted by the Journal of
Parapsychology in the mid-1970s, precisely to avoid problems associated with
selective reporting.

Filedrawer estimates and models for publication bias are useful; however, to
more directly investigate whether selective reporting could plausibly account for
the observed results, in late 2005 we conducted a survey among many of the
researchers who have conducted RNG studies. The survey revealed that the
average number of unreported, non-retrievable experiments per investigator
was about one, and some of those missing studies were reportedly statistically
significant. Based on our survey, we believe that thousands of supposed
filedrawer studies simply do not exist, and thus that selective reporting is an
improbable explanation for the observed results.

Quality Assessment

Another reason that Schub was unimpressed by the RNG meta-analyses was
due to a misinterpretation of the quality scoring method used in the Radin and
Nelson (1989) analysis. Based on the raw numbers used to create those scores, he
concluded that ‘‘The average quality score in this data . . . is quite low—only 4.4
out of a possible 16.’’ And that ‘‘Many quality features are surprisingly rare.
Automatic recording . . . is known present in only 57% of the non-PEAR studies.’’

For the 1989 meta-analysis we formed a conservative measure of
methodological quality based on a combination of all known factors thought
to be relevant to quality in this experimental domain. That analysis provided
a range of relative scores useful for studying relationships among reported
methods, effect sizes, and statistical significance. The scores were not intended
to provide an absolute measure of experimental quality.
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For example, automatic recording in RNG studies is so obvious a design
factor that undoubtedly some investigators thought it unnecessary to report this
feature. Nevertheless, for conservative reasons our scoring method relied exclu-
sively on design features that were actually reported.

To gain an assessment of actual experimental quality, the best approach is to
seek expert opinion based on a broad knowledge of the literature, both pro and
con, and hands-on laboratory experience. Our opinion is that the overall quality
of these studies is quite high, but as authors of positive RNG meta-analyses, we
would not expect skeptics to uncritically accept our judgment. Ideally, we could
refer to the opinion of meta-analysts who are not persuaded that RNG studies
support the MMI hypothesis, and who have derived an independent assess-
ment about quality based on their reading and coding of all of the relevant
reports. Fortunately, such an opinion exists in the analysis of B�sch et al. (in
press), who concluded that ‘‘The safeguard (quality) analyses indicated that
the average study quality is very high.’’ In addition, they found that the subset of
highest quality studies (42% of all studies) resulted in a significant effect
based on a random effects model (after excluding three outlier studies, as they
recommend).

In referring to a quality vs. effect size correlation reported in The Conscious
Universe (Radin, 1997), Schub writes, ‘‘A simple correlation coefficient is
calculated between hit rate and quality. Radin concludes that hit rates are not
related to quality, but the correlation coefficient he quotes is 0.165 . . ., which
is significantly positive . . . .’’ This is incorrect, and probably due to Schub
misreading a footnote. The cited correlation refers not to quality vs. effect
size, but rather to a significant improvement in quality vs. year of publication.
This correlation was mentioned in the book to demonstrate that experiments
have considerably improved over the years in response to criticisms and
advancements in experimental protocols. The correct correlation for hit rate vs.
quality is, as noted in the book, r ¼ 0.01 (Radin, 1997: 312), which is not
significant.

Minor Points

Statistical significance. Schub claims in his Table 1 that after applying
a random effects model to the data that the null hypothesis begins to look more
attractive. What do other analysts find when using the same model? B�sch et al.
(in press) found that their random effects model resulted in an overall z¼ 4.08,
after excluding three ‘‘outlier’’ studies. They cite this as evidence for
a ‘‘statistically highly significant effect in the intended direction.’’ It is worth
noting that B�sch et al. (in press) do not interpret this as evidence for an MMI
effect, but rather reflective of a selective reporting bias. We disagree with that
interpretation for reasons already discussed, but the fact remains that an
independent group using the same analytical model finds a highly significant
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outcome where Schub does not. The difference may be due to B�sch et al.’s (in
press) updated literature and their focus on a subset of MMI studies involving
explicit human intention on truly random RNGs. In any case, one may argue
that the ‘‘true’’ z score for these data, depending on which model one wishes to
apply, probably resides in the range of z¼ 4 through 16, where the lower portion
of this range involves weighting z scores by sample size.

Applicability of random effects modeling. Another problem with Schub’s
argument based on the non-significance of his random effects model is its
inapplicability to a phenomenological existence test. That is, a non-significant
random effects model does not imply that MMI does not exist. As Schub notes in
his Appendix, ‘‘First a study effect size is chosen from a distribution with the
between-studies variance, and then the observed hit rate is chosen from
a distribution with the within-study variance.’’ What he does not discuss is the
fact that the standard random effects analysis assumes that any excess between-
studies variance comes from random confounds that are irrelevant to the effect
being measured, and statistical significance is calculated solely for the residual
constant effect after the excess between-studies variance has been discarded.
The problem with this approach for MMI-RNG experiments is that any non-zero
effect size in any study is a demonstration of the existence of MMI. While
spurious systematic effects may arise from methodological flaws, excess random
between-studies variance in the random effects model strengthens rather than
weakens the case for existence of the effect, a fact which does not appear in the
standard significance report for the random effects main effect alone.

Optional stopping. Schub claims as an additional problem that ‘‘. . . in many
of the original papers, the number of trials is not fixed ahead of time, so
experiments might be run until a fixed statistical significance is obtained.’’ In
fact, it can readily be demonstrated by application of the well-known martingale
theorem of probability theory that such optional stopping by individual
experimenters cannot induce a spurious effect from the vantage point of
a meta-analyst reviewing the literature. The only stopping point of importance is
the final stopping point of the meta-analysis itself. Since this is established
chronologically by the decision when to undertake the meta-analysis, it is
presumably independent of the outcome (barring, perhaps, precognition by the
analysts), and therefore it cannot induce a bias. While this is relevant to the
publication bias problem since the martingale theorem can be defeated if some
of the data are hidden, we may note that experiments which seek to attain
significance by optional stopping—but have not yet done so—will also be
among the largest and longest databases (since first-crossing probability for any
statistical threshold declines with time). However, the largest and longest
running databases are also those least likely to be either voluntarily hidden or
irretrievable by meta-analysts. Thus, optional stopping is an implausible source
of statistical inflation in the meta-analyses.

Repeatability. Is the MMI effect repeatable? Schub opines that ‘‘The
subsequent failure by PEAR and others to replicate the original PEAR
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findings . . . argues that the meta-analysis is not valid.’’ This statement is an
overly simplistic view of replication. A few new experiments do not eradicate
the results of a twelve-year experimental series from one laboratory, or a forty-
year larger body of independently replicated data. But, Schub argues, ‘‘Half the
authors have never published a significant effect.’’ It is true that the majority of
MMI studies do not reach statistical significance (two-tailed). But when all those
‘‘failed’’ studies are combined, their cumulative result is a highly significant
Stouffer z . 5. This illustrates why significance counting is no longer used as
a measure of replication—it fails to take into account the arbitrariness of what
‘‘statistically significant’’ means.

Nonsense hit rates. Schub mentions that ‘‘The hit rate of 0.509 quoted for the
1989 data in both The Conscious Universe and the 2003 paper is much larger
than any hit rate shown in Table 1 . . . it turns out that mostly it is because the
calculation that gives 0.509 includes a number of nonsense hit rates.’’ This is
true, and we are grateful to Schub for spotting this mistake. There were twenty-
four experiments coded with N ¼ 1 because the actual sample size in those
studies was unknown. Of those twenty-four studies, twenty-two were reported as
‘‘not significant,’’ so for them we assigned the most conservative value of z¼ 0,
equivalent to the null hypothesis hit rate of 0.5. When re-averaging all study hit
rates after excluding two studies where z . 0 and N ¼ 1, the average hit rate
dropped slightly from the cited 0.509 to 0.507.

Reduced variance in control studies. Schub was concerned that ‘‘Even the
control studies do not behave as expected, and show evidence of what are
probably reporting biases . . . . The PEAR control data [too] is dramatically
deficient in the tails.’’ This is true, but is it really due to reporting bias? In the
case of the PEAR Lab data, there is no reporting bias by design, precisely to
avoid such arguments. The reduced variance of the remainder of the literature-
reported control studies suggests that the PEAR variance effect replicates.

Ad hoc models. Schub faults our use of Rosenthal’s ‘‘ad hoc’’ suggestion that
a ratio of 5 to 1 failsafe to known studies might be considered a robust effect, but
he doesn’t find objectionable the equally ad hoc nature of Matthews’ (1999)
recommendation that people who are highly skeptical about a hypothesis should
hold out for z . 4.75. The fact is that the literature does report individual high-
quality RNG experiments that have surpassed Matthews’ (1999) threshold (such
as those of PEAR and Schmidt), and yet those studies have failed to sway the
opinions of those who prefer to believe that such results must be due to flaws,
fraud, or selective reporting.

Changing z scores. In comparing data used for our 2003 meta-analysis paper
to those used in The Conscious Universe, Schub ‘‘found 15 z’s had changed from
negative to positive, and 15 from positive to negative.’’ After analyzing the sign
changes, it appears that the cause was probably confusion over how the
intentional goal in each experiment was coded. We originally coded each study’s
aim as high or low, and then entered the associated z scores according to whether
the results were in alignment with this goal. For example, if a study resulted in
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a below chance outcome, and the intentional goal was low, then the associated
z score would be recorded as positive. This double-negative bookkeeping
was confusing, and it apparently resulted in shifting the signs of some of the
figures when updating the database. We are grateful to Schub for bringing
this to our attention, and it does raise a question about the impact of these sign
shifts on the overall results. A conservative way to make this assessment is to
evaluate the worst case scenario, in which all of the changed z scores are shifted
towards the negative. Fortunately, the majority of studies (81%) were high aim,
so even the worst case scenario would not be expected to affect the overall
results much. In fact this scenario changed the original Stouffer z (for the
analysis reported in The Conscious Universe) from 12.7 to 10.5, a non-
significant decline.

On the Need for Certainty

At the beginning of this paper, we asked why some scientists persist in
exploring anomalies while others persist in criticizing them. We believe the
answer involves a meta-issue—a basic temperamental difference that creates
two classes of investigators. Most scientists would probably agree that
demonstrating the existence of a genuine MMI effect would be of profound
importance, and thus careful consideration of this topic is warranted. But
different predilections invariably lead to different assessments of the same
evidence. Scientists who worry about Type I errors insist on proof-positive
before taking the evidence seriously, while those who are more concerned about
Type II errors prefer to take a more affirmative stance to counteract the
prejudices invariably faced by anomalies research.

Type I preference leads to B�sch et al.’s (in press) comment that ‘‘this unique
experimental approach will gain scientific recognition only when we know with
certainty what an unbiased funnel plot . . . looks like’’ (emphasis added). Or to
Schub’s statement that ‘‘perfect methodological quality is a logical necessity in
parapsychology, since a paranormal effect can only be demonstrated if all
possible non-paranormal causes are ruled out’’ (emphasis in the original). De-
mands for perfect, absolutely certain results are laudable in principle, but of
course in practice such perfection does not exist. Of greater importance, when
such statements are unpacked they are found to hide an irresolvable
epistemological paradox.

Collins (1992) called this paradox the Experimenters’ Regress, a Catch-22 that
arises when the correct outcome of an experiment is unknown. To settle the
existence question under normal circumstances, where results are predicted
by a well-accepted theory, the outcome of an experiment is simply compared
to the prediction. If they match, then we ‘‘know’’ that the experiment was
conducted in a proper fashion and the outcome is taken as correct. If the
outcome does not match, then the experiment was flawed. Unfortunately, when
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it comes to a pre-theoretical hypothesis like MMI, to judge whether an
experiment was performed ‘‘perfectly,’’ or to know ‘‘with certainty’’ what an
unbiased funnel plot looks like, we first need to know whether MMI exists. But
to know that, we need to conduct the correct experiment. But to conduct the
correct experiment, we need a well-accepted theory to inform us what ‘‘correct’’
means. But . . . and so on.

For scientists with Type I temperament, this loop is destined to cycle
indefinitely in spite of the application of the most rigorous scientific methods.
The stalemate can be broken only by Type II scientists who are willing to
entertain the possibility that Nature consists of many curious phenomena, some
of which are not yet adequately accounted for by prevailing theories. In short,
Type I scientists adopt the working hypothesis that claimed anomalies do not
exist, and they seek evidence supporting that hypothesis; Type II scientists adopt
the opposite approach. Given the biasing effects of one’s adopted beliefs, it is
not surprising that scientists tend to perceive their predilections. Of course, the
goal in science is to get beyond personal beliefs and narrow in on the objec-
tive truth as best as possible. This is why critiques are so valuable, but also,
when anomalies are in fact genuine, why debates tend to persist until both par-
ties drop from exhaustion and new generations rise to the task with fresh energy
and fewer prejudices.

Conclusion

From the earliest investigations of MMI with RNGs, researchers struggled to
understand the physically perplexing but psychologically sensible goal-oriented
nature of these phenomena (Schmidt, 1987). After a decade of replicated proof-
oriented experiments suggested that something interesting was going on, most
investigators began to concentrate on process-oriented research in an attempt to
understand these complex psychophysical interactions. We sympathize with
critics who assume that MMI implies a stationary, uniform, force-like effect on
individual random bits, because that is also what many earlier researchers
assumed. Unfortunately, that simple idea is not what Nature is revealing in these
experiments.

Independent reviews of the relevant literature continue to indicate that the
average methodological quality in these studies is high, and that on composite
the results of hundreds of experiments are not due to chance. Some reviewers
believe that selective reporting plausibly explains these results; we believe
there are too few researchers and resources available to account for the filedrawer
estimates. As a result, we find the cumulative data sufficiently persuasive to
indicate that something interesting is going on. Like many of our colleagues,
having reached that conclusion we find it more fruitful to focus on understanding
the nature of these effects rather than spending time on a quest for the perfect
experiment with absolutely certain results. That Holy Grail only exists in fantasy.
This anomaly exists in the real world.
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